Gene Loss Rather Than Gene Gain Is Associated with a Host Jump from Monocots to Dicots in the Smut Fungus Melanopsichium pennsylvanicum
نویسندگان
چکیده
Smut fungi are well-suited to investigate the ecology and evolution of plant pathogens, as they are strictly biotrophic, yet cultivable on media. Here we report the genome sequence of Melanopsichium pennsylvanicum, closely related to Ustilago maydis and other Poaceae-infecting smuts, but parasitic to a dicot plant. To explore the evolutionary patterns resulting from host adaptation after this huge host jump, the genome of Me. pennsylvanicum was sequenced and compared with the genomes of U. maydis, Sporisorium reilianum, and U. hordei. Although all four genomes had a similar completeness in CEGMA (Core Eukaryotic Genes Mapping Approach) analysis, gene absence was highest in Me. pennsylvanicum, and most pronounced in putative secreted proteins, which are often considered as effector candidates. In contrast, the amount of private genes was similar among the species, highlighting that gene loss rather than gene gain is the hallmark of adaptation after the host jump to the dicot host. Our analyses revealed a trend of putative effectors to be next to another putative effector, but the majority of these are not in clusters and thus the focus on pathogenicity clusters might not be appropriate for all smut genomes. Positive selection studies revealed that Me. pennsylvanicum has the highest number and proportion of genes under positive selection. In general, putative effectors showed a higher proportion of positively selected genes than noneffector candidates. The 248 putative secreted effectors found in all four smut genomes might constitute a core set needed for pathogenicity, whereas those 92 that are found in all grass-parasitic smuts but have no ortholog in Me. pennsylvanicum might constitute a set of effectors important for successful colonization of grass hosts.
منابع مشابه
Intron loss and gain during evolution of the catalase gene family in angiosperms.
Angiosperms (flowering plants), including both monocots and dicots, contain small catalase gene families. In the dicot, Arabidopsis thaliana, two catalase (CAT) genes, CAT1 and CAT3, are tightly linked on chromosome 1 and a third, CAT2, which is more similar to CAT1 than to CAT3, is unlinked on chromosome 4. Comparison of positions and numbers of introns among 13 angiosperm catalase genomic seq...
متن کاملDivergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm
NAC (NAM/ATAF/CUC) proteins constitute one of the biggest plant-specific transcription factor (TF) families and have crucial roles in diverse developmental programs during plant growth. Phylogenetic analyses have revealed both conserved and lineage-specific NAC subfamilies, among which various origins and distinct features were observed. It is reasonable to hypothesize that there should be dive...
متن کاملEvolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and gre...
متن کاملMonocot leaves are eaten less than dicot leaves in tropical lowland rain forests: correlations with toughness and leaf presentation.
BACKGROUND AND AIMS In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50-100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest du...
متن کاملDetection of lpsA Gene in Neotyphodium endophytic Fungi of Grasses in Iran
The lpsA gene, a late acting gene in the biosynthetic pathway of ergovaline, a suspected causative agent for fescue toxicosis in cattle, has been cloned from Neotyphodium lolii, an endophytic fungus of Lolium perenne. In this study, a similar gene was detected in several strains of endophytic Neotyphodium spp. isolated from grass hosts endogenous to Iran using direct and nested-PCR assays. Exce...
متن کامل